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Different Methods of Neural Network Based Modelling for
Polymerization Process
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In this work, different types of neural networks and modeling methodologies are used and compared:
feedforward and recurrent networks, stack neural networks and a hybrid model composed from a simplified
phenomenological model and a neural network. For each situation, the performance of the networks was
evaluated through mean squared error and correlation between training data and neural network predictions.
Accurate results were obtained with different types of neural models, but our approach recommends
feedforward neural networks which are simple to train and use. The well known free radical polymerization
of methyl methacrylate, accompanied of gel and glass effects and achieved in a batch bulk process is
considered as example. In a hybrid methodology, the kinetic model used until the onset of the gel effect is
associated with a neural model which replaces the diffusional effects representing the difficult part to model
in the process.
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The development of complete mechanistic models for
polymerization reactors is not an easy task. The difficulties
lie on the complex reactions occurring simultaneously
inside the reactor, the large number of kinetic parameters,
which are usually not easy to determine, as well as the
poor understanding of chemical and physical phenomena
for mixtures involving polymers.

To overcome the difficulties in the mechanistic modeling
of polymerization processes, data based empirical models
could be utilized. Neural networks possess the ability to
learn what happens in the process without actually
modeling the physical and chemical laws that govern the
system. Therefore, they are useful for modeling complex
nonlinear processes where understanding is limited.

The open literature presents many attempts concerning
neural network applications for polymerization processes:
direct modeling with different types of neural networks [1-
4], neural networks based soft sensors [5], inferential
modeling [6, 7], inverse neural network modeling [4, 8, 9],
optimization [10-12],  process control [13-15]. These types
is  of applications are reviewed in a precedent work [16].

Neural networks for nonlinear process modeling can be
broadly divided into two categories: static networks, useful
for steady-state modeling, and dynamic networks that are
more appropriate for dynamic models. The first category
includes the common multilayer feedforward neural
networks in which information propagates only in one
direction. The most important category of dynamic
networks is represented by recurrent networks. In globally
recurrent networks, the lagged network outputs are fed
back to the network input nodes through time delay units.
The network output depends not only on the network inputs,
but also on the previous network outputs. Thus the
predictions from a recurrent neural network are long range
or multi-step ahead predictions. In locally recurrent
networks, the output of a hidden neuron is fed back to its
input through one or several time delay units. One important
advantage of such networks, compared with fully recurrent
networks, is that they have a smaller number of weights
and can therefore be trained more efficiently.
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Many researchers have shown that simply combining
multiple neural networks can generate more accurate
predictions than using any one of the individual networks
alone. Such a combination of neural networks is known as
a stacked neural network - where the final model
prediction represents a combination of the prediction from
the individual ones.

A method to improve the model generalization capability
is given by a combination between a simplified
mechanistic model with a neural network thus obtaining a
hybrid model that may gather the best characteristics of
both phenomenological and empirical approaches.

Several examples of using different types of neural
networks for polymerization reactions are enumerated in
the following. A model predictive control strategy based
on a feedforward neural network model is proposed for an
industrial polypropylene process [13]. In  [17] it is described
the application of feedforward neural networks and hybrid
models to the finishing stage of nylon-6,6 polycondensation
in a twin-screw extruder. In [18] is presented an example
of how simple feedforward neural networks are able to
help with the optimization of emulsion polymerization
reactors, and more specifically, with the inverse problem,
i.e., starting from the polymer properties and productivity
to determine the reactor operating conditions. A one-
hidden-layer artificial neural network using a back-
propagation structure has been trained on experimental
data for the identification of styrene conversion and polymer
average molecular weight produced in a bulk
polymerization initiated by bifunctional peroxides [19]. It
is presented an algorithm consisting of a three-layer
feedforward artificial neural network which uses
supervised learning with reinforcement in a unique topology
in order to improve and apply the temperature control of a
free radical solution polymerization of styrene and to
examine its performance on the basis of adaptive heuristic
criticism control [20]. Since recurrent neural networks offer
accurate long-range predictions, they are recommended
in batch process optimal control where the ultimate interest
lies on the final product quality; an example is the optimal
control of a batch emulsion copolymerization reactor [11].
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The contribution of Ng and Hussain [14] consists of the
using an inverse neural network in a hybrid with a first
principle model for the direct control of a nonlinear semi-
batch polymerization process. These hybrid models were
utilized in the control strategy to track the set point of the
temperature of the polymerization reactor under nominal
conditions and with various disturbances. To address the
difficulties in batch polymerization reactor modeling and
optimal control,  there were used recurrent neural networks
and hybrid models containing neural network-based
discrete-time models [21, 22, 23].Bootstrap aggregated
neural networks are used to model a batch polymerization
reactor from limited batches of process operational data
[7, 12]. This is a novel technique for building robust non-
linear models in which several different pairs of training
and testing data sets are formed and for each pair, a neural
network model is developed. One of the paper presents a
technique for developing neural-network-based process
models using both dynamic and static process operating
data and feedforward neural networks [24]. Long-term
prediction models based on mixed order locally recurrent
neural networks in which different hidden neurons having
different numbers of feedbacks are applied to a continuous
polymerization process [1].

Our work deals with neural networks based modeling
of the free radical polymerization of methyl methacrylate
(MMA). Different types of neural networks and neural
methodologies are used and compared: feedforward and
recurrent networks, stacks neural networks and a hybrid
model composed from a phenomenological model which
does not take into account the diffusional effects and a
neural network which replaces the gel and glass effects.
For each situation, the networks performance is evaluated
from two points of view: the accuracy of the results and
the difficulty in handling the network. As a main conclusion,
our approach demonstrates the possibility of accurately
model a free radical polymerization process with
feedforward networks having simple topologies - 1 or 2
intermediate layers.

This paper brings as novelty the application of different
modeling methods that are based on neural networks (as
network types and possibilities of model construction), as
well as the comparison between results and performances
of the models in order to select the optimal variant. In
contrast with many other works in the literature, which
recommend the use of stacked recurrent networks (which
are complicated entities) for dynamic process modeling,
the present approach points out the efficient use of some
simple neural networks – feedforward networks with two
hidden layers. A special proposal is also the hybrid model
considered, based on a simple neural network, whose main
advantage is to avoid quantifying the gel and glass effects
that are usually met in free radical polymerization. The
results is that such neural network models are proved to
devise with accuracy the actual behavior of the investigated
polymerization system.

Neural networks
Neural networks perform computation in a very different

way than conventional computers, where a single central
processing unit sequentially dictates every piece of action.
Neural networks are built from a large number of simple
processing elements (neurons) that individually deal with
parts of a big problem. A processing element simply
multiplies an input by a set of weights, and nonlinearly
transforms the result into an output value. The power of
neural computation comes from the massive
interconnection among the processing elements, which
share the load of the overall processing task, and from the
adaptive nature of the parameters (weights). The way in
which neurons are connected to form a network represents
the neural network topology (architecture). More precisely,
the topology of a neural network consists of the framework
of neurons together with its interconnection structure. The
neural network topology  plays a fundamental role in its
functionality and performance [25].

The form of the interconnection provides one of the key
variables for dividing neural networks into families. The
most general case is the fully connected neural network.
By definition, any processing element can feed or receive
activations of any other including itself. Therefore, when
the weights are represented in matrix form (the weight
matrix), it will be fully populated. A 6 processing elements
fully connected network is presented in the figure 1 [25].
This network is called a recurrent network and w11…w66
are the weights of the network. In recurrent networks some
of the connections may be absent, but there are feedback
connections. An input presented to a recurrent network at
time t will affect the networks output for future time steps
greater than t. Therefore, recurrent networks need to be
operated over time. Dynamic networks are important tools
for a number of important engineering applications which
require the processing of time-varying information. To cope
with time varying signals, neural network topologies have
to be enhanced with short term memory mechanisms.
There is probably the area where neural networks will
provide an undisputed advantage, since other technologies
are far from satisfactory.

If the interconnection matrix is restricted to
feedforwarding activations (no feedback nor self
connections), the neural network is defined as feedforward.
Feedforward networks are instantaneous mappers; i.e. the
output is valid immediately after the presentation of an
input. A special class of feedforward networks is the
layered class, which is called as multilayer perceptron
(MLP). Multilayer perceptrons have processing elements
arranged in layers. The layers without direct access to the
external world, i.e. connected to the input or output, are
called hidden layers (processing elements 4, 5 in the fig.
2). Layers that receive the input from the external world
are called the input layers (processing elements 1, 2, 3 in
the fig. 2); layers in contact with the outside world are

Fig. 1. A fully connected neural
network and the weight matrix.
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called output layers (processing element 6 in the figure 2
[25]).

Notice that most entries in the weight matrix of an MLP
are zero. In particular, any feedforward network has at least
the main diagonal, and the elements below populated with
zeros. Feedforward neural networks are therefore a special
case of recurrent networks.

Generalized feed-forward networks (GFN) are a
generalization of the MLP such that connections can jump
over one or more layers (fig. 3 [25]). Generalized
feedforward networks often solve the problem much more
efficiently than MLP. A standard MLP requires hundreds of
times more training epochs than the generalized
feedforward network containing the same number of
processing elements.

In the training phase, the neural network learns the
behaviour of the process. The training data set contains
both input patterns and the corresponding output patterns
(also called target patterns). Neural training leads to finding
values of connection weights that minimize differences
between the network outputs and the target values. The
most extensively adopted algorithm for the learning phase
is the back-propagation algorithm. By adapting its weights,
the neural network works towards an optimal solution
based on a measurement of its performance. The training
phase is considered complete when the error of all the
training patterns is less than a prespecified error criterion
or a maximum number of epochs had been reached. There
are mainly three practical aspects related to learning. The
first one is the choice of the training set and its size. The
second is the selection of learning constants, and the third
is when to stop the learning. Unfortunately, there are no
“formulas” to select these parameters. In this reason, only
some general rules apply and a lot of experimentation is
necessary.

 The purpose of developing a neural model is to devise a
network (set of formulae) that captures the essential
relationships into the data. These formulae are then applied
to new sets of inputs to produce corresponding outputs.
This is called generalization and represents subsequent
phase after training - validation or testing phase. Since a
neural network is a nonlinear optimization process made
up of a learning phase and a testing phase, the initial data
set must be split into two subsets: one for training and one
for testing. A learning algorithm should lead to a good fit to
the training samples and, simultaneously, to a network that
has a good generalization capability. A network is said to
generalize well when the input-output relationship, found
by the network, is correct for input/output patterns of
validation data which were never used in training the
network (unseen data).

Experimental part
To model monomer conversion, number average

molecular weight and weight average molecular weight
in free radical polymerization of MMA, neural networks with
different topologies are built. Simulation data of different
temperature and initiator concentrations were used in
building and training neural networks. Apparently,
unsuitable for the use of simulation data, many authors
working with neural networks are utilizing simulation data
to illustrate their modeling methodologies. We apply this
technique in the present paper too. The obtained simulation
data, in a suitable quantity, is useful to the comparison of
the performance of various types of neural models
(network types and modeling techniques based on neural
networks).

The reaction operation conditions for batch bulk
polymerization of methyl methacrylate chosen for neural
network training were: 50 ≤ T ≤ 90°C (temperature) with a
step of 5°C in data collection through simulation, 10  I0 ≤ 50
mol/m3 (initial concentration of initiator) with step of 5
mol/m3 and 0  ≤  t ≤  500 min , step 1 min (time). Our
kinetic model developed in a previous paper [26] was used
to produce simulation data. A large amount of training data
results in this way, in order to exceed at least 3-4 times the
number of weights for neural networks. The inputs of the
networks were the reaction conditions, T, I0, t and the
outputs were monomer conversion and number and weight
average polymerization degrees (x, DPn, DPw). The number
of hidden layers and units were established by training a
different range of networks and selecting the one that best
balanced generalization performance against network
size.

Fig. 2. A multilayer perceptron and its weight matrix.

Fig. 3. A generalized feedforward network

Modular feedforward networks are a special class of
MLP. These networks process their input using several
parallel MLPs, and then recombine the results. This tends
to create some structure within the topology, which will
foster specialization of function in each sub-module. In
contrast to the MLP, modular networks do not have full
interconnectivity between their layers. Therefore, a smaller
number of weights are required for the same size network
(i.e. the same number of processing elements). This tends
to speed up training times and reduce the number of
required training exemplars. There are many ways to
segment a MLP into modules. Several examples are
presented in figure 4 [25].

Fig. 4. Modular feedforward networks, with
different configurations
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Results  and discussion
Table 1 presents several examples for the trained neural

networks. The column Topology contains the number of
neurons in input, hidden and output layers, MSE is the mean
squared error and r represents the correlation between
training data and the answers of the networks. For instance,
MLP(3:42:14:3) indicates 3 neurons in input layer, 42
neurons for the first hidden layer, 14 neurons for the second
hidden layer and 3 neurons for the three outputs variables.

The mean squared error was computed using the
following formula:

                      (1)

where M is the number of nodes in output layer, L is the
number of exemplars in the data set (number of patterns),

 is the desired output for exemplar p at processing
element k, and   is the network output for exemplar p at
processing element k.

network to memorize the nonlinear behaviour of complex
processes. In table 2, the relative errors were calculated
as:

                       (2)

where p = x, DPn and DPw for the columns x error, DPn error
and DPw error. The notations used in table 2 are: x, DPn,
DPw for phenomenological model and x_net, DPn_net,
DPw_net for neural model. Averaging these errors, the
following results are obtained: 0.4436 % for monomer
conversion, 2.6402 % for DPn and 2.6078 % for DPw

. Also,
the correlations for the two data types (model results and
neural networks predictions) were: 0.99927 for monomer
conversion, 0.99991 for DPn and 0.99974 for DPw.

Table 3 contains some GFNs (Generalized Feedforward
Networks) trained for MMA polymerization, with reaction
conditions as inputs (T, I0 and t) and x, DPn and DPw as
outputs. The best network, with smallest MSE and high
value for r (closed to 1) was GFN(3:42:14:3), having the
same topology with the best MLP. Figures 8, 9 and 10
contains examples for GFN (3:42:14:3) predictions.

Stack (modular) neural networks were also designed
and tested. Table 4 shows the performances of four neural
networks with the topologies from figure 4 and the same
dimensionality (3 input neurons, 42 neurons in the first

Table 1
DIFFERENT MLP TOPOLOGIES TRAINED FOR MMA

POLYMERIZATION

The best topology, corresponding to the best
performance, was identified as MLP(3:42:14:3). The good
agreement between the simulation data and the results of
neural network in the training phase proves that the
network learned well the behaviour of the process. Some
examples are given in figures 5, 6 and 7, for the three
parameters of interest: monomer conversion and number
and weight average polymerization degrees (DPn and DPw,
respectively).

For the validation phase, new data have been generated
by simulation; it is more important to evaluate the
performance of the neural networks on unseen data that
training data. In this way, we can appreciate the most
important feature of a neural model - the generalization
capability. Table 2 shows good agreement between
simulation data (not used in the training phase) and neural
network predictions, highlighting the capability of neural

Fig. 5. The monomer conversion obtained from phenomenological
model (circles) and as prediction of MLP (3:42:14:3) (continuous

lines) on training data at different reaction conditions (T = 50 and
70°C, I0 = 20 and 25 mol/m3)

Fig. 6. The number average polymerization degree obtained from
phenomenological model (circles) and as predictions of MLP

(3:42:14:3) (continuous lines) on training data at different reaction
conditions (T = 50 and 70°C, I0 = 20 and 25 mol/m3)

Fig. 7. The weight average polymerization degree obtained from
phenomenological model (circles) and as predictions of MLP

(3:42:14:3) (continuous lines) on training data at different reaction
conditions (T = 50 and 70°C, I0 = 20 and 25 mol/m3)
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hidden layer, 14 neurons in the second hidden layer and 3
outputs neurons). Accurate predictions were obtained with
the network corresponding to the connection 2 in figure 4.

Figure 11 shows an example, the modular network 2 in
table 4 being used at T = 70°C and I0 = 25 mol/m3.

Recurrent neural networks are also tested for
polymerization reaction, especially because this type of

topology is recommended for modeling dynamic process.
Accurate results are obtained, as well as with feedforward
neural networks. Figures 12 and 13 present variation in
time of monomer conversion and average polymerization
degrees at T = 50°C and I0 = 25 mol/m3.

Kipping in mind that recurrent networks are more difficult
to design and train, we can conclude that feedforward
neural networks represent an acceptable alternative of
modeling polymerization processes.

A special software application - NeuroSolutions - was
used in this paper in order to design and obtain predictions
of neural networks. In this program, the following
specifications are necessary: the network type, the input
and desired output values, the stop condition of the training,
the number of processing elements in hidden layers, the
activation functions, the learning rule, the maximum
number of epochs and some configuration parameters to
display the neural model development. We built and trained
many networks, changing the above options, and then we
selected the best one that balances the size and the
performance.

Another problem focused in this paper refers to the use
of different activation functions in the networks and
different learning rules in the training phase. By activation,
we have described the way in which information, or data,
flows through the network. Generally, each neuron receives
weighted input from every other neuron in the network,
applies a non-linear threshold and presents its output for
the others to input (fig. 14) [25].

Neural networks are designed by first defining the neuron
interconnections, and then assigning a learning procedure
to adapt its weights.

In Table 5 are presented the performances of the MLP
(3:42:14:3) containing different activation functions
(hyperbolic tangent, sigmoid, linear hyperbolic tangent,

Table 2
DATA OF THE PHENOMENOLOGICAL MODEL AND PREDICTIONS OF  MLP(3:42:14:3) OBTAINED IN THE VALIDATION PHASE

AT DIFFERENT REACTION CONDITIONS

Table 3
DIFFERENT GFNS TOPOLOGIES TRAINED FOR MMA

POLYMERIZATION

Fig. 8. Monomer conversion obtained from phenomenological
model (circles) and as predictions of GFN (3:42:14:3) (continuous

lines) at different reaction conditions (T = 50 and 70°C,
I0 = 20 and 25 mol/m3)
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Table 4
DIFFERENT MODULAR NEURAL NETWORKS

TRAINED FOR MMA POLYMERIZATION

Fig. 12. Monomer conversion obtained from phenomenological
model (circles) and as predictions of feedforward neural network

(thin line) and recurrent network (thick line) at T = 50°C and
I0 = 25 mol/m3

Fig. 9. Number average polymerization degree obtained from
phenomenological model (circles) and as predictions of GFN
(3:42:14:3) (continuous lines) at different reaction conditions

(T = 50 and 70°C, I0 = 25 and 20 mol/m3)

Fig. 10. Weight average polymerization degree obtained from
phenomenological model (circles) and as predictions of GFN
(3:42:14:3) (continuous line) at different reaction conditions

(T = 50 and 70°C, I0 = 25 and 20 mol/m3)

Fig. 11. Monomer conversion and average polymerization degrees
obtained from phenomenological model (circles) and as

predictions of modular network (continuous lines) at T = 70°C
and I0 = 25 mol/m3

linear sigmoid, softmax) and trained with different
algorithms (momentum, learning step, conjugate gradient,
momentum and adaptive learning rate (deltabardelta),
quick propagation), available in NeuroSolutions.

The best performance corresponds to hyperbolic tangent
as activation function for hidden layers and deltabardelta
as learning algorithm.

A method to improve the model generalization capability
is represented by a combination between a simplified
mechanistic model with a neural network, thus obtaining
a hybrid model that may gather the best characteristics of
both phenomenological and empirical approaches. For

MMA polymerization, at low conversions, the kinetic model
is well known, but, at high conversions, the gel and glass
phenomena appear, representing a difficult part to model.
Therefore, we propose the following hybridization
procedure: until critical conversion, at which the gel effect
appears, the simplified phenomenological model is valid
[26]. After this conversion, modeling is performed with a
MLP (4:42:14:3), which has temperature, initiator
concentration, time and initial conversion as inputs and
final conversion and average polymerization degrees as
outputs. It is necessary to introduce conversion both as an
input (initial value) and as an output parameter (final value
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corresponding to the current time) because the neural
model is not used from zero conversion, but from an initial
conversion equal to the critical conversion. Figures 15 and
16 present an example for this procedure applied at T =
70°C and I0 = 25 mol/m3. The way for determining the
critical conversion is also pointed out in the figure 15 – the
conversion at which the real conversion differs from that
of the simplified kinetic model (model without gel and
glass effects).

Conclusions
Performances of different types of neural networks

(feedforward, recurrent and stacks), containing different
activation functions and trained with different algorithms

Fig. 13. Average polymerization degrees obtained from
phenomenological model (circles) and as predictions of

feedforward neural network (thin line) and recurrent network
(thick line) at T = 50°C and I0 = 25 mol/m3

Fig. 14. The mapping of a neuron

Table 5
PERFORMANCE OF MLP(3:42:14:3) FOR

DIFFERENT LEARNING RULE AND ACTIVATION
FUNCTIONS

Fig. 15. Monomer conversion obtained at T = 70°C and I0 = 25 mol/
m3 with a hybrid model composed of a simplified

phenomenological model (•) and a MLP (4:42:14:3) network (o),
successively used until xcrit = 0.24; continuous line – complete

phenomenological model

Fig. 16. Number and weight average polymerization degrees
obtained at T = 70°C and I0 = 25 mol/m3 with a hybrid model

composed of a simplified phenomenological model (•) and a
MLP(4:42:14:3) network (o), successively used until xcrit ;

continuous line – complete phenomenological model

were evaluated for the free radical polymerization of methyl
methacrylate. As a main conclusion, a feedforward neural
network with two hidden layers, trained with adaptive
learning rule and using hyperbolic tangent as activation
function for hidden neurons provides accurate results for
polymerization process under study. A hybrid model
composed from a simplified phenomenological model and
a neural network, used successively before and after critical
conversion, is also recommended for accurately render
the real process.
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